查看原文
其他

重磅!深度学习圣经“花书”核心笔记、代码发布

极市平台 2021-09-20

以下文章来源于AI有道 ,作者红色石头

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流点击文末“阅读原文”立刻申请入群~


作者 | Aman Dalmia、Ameya Godbole

来源 | AI有道

原创整理 | 红色石头

项目地址 | 

https://github.com/dalmia/Deep-Learning-Book-Chapter-Summaries


《深度学习》,又名“花书”。该书由三位大佬 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 撰写,就在最近,三位大佬还获得了图灵奖:人工智能划时代一天!深度学习三巨头获 2018 年图灵奖 ,本书是深度学习领域奠基性的经典教材,被誉为深度学习的“圣经”。


原书内容非常充实,接近 800 页。这本书内容很深很全面,但起点稍微高了一些,对数学理论基础知识要求的比较多。因此,读完之后,及时进行高度概括和经验总结是十分有帮助的。最近在 GitHub 上发现一个关于花书各章摘要的项目,内容非常精炼,除了笔记的同时,部分章节还配备代码,值得推荐,我们一起来看一下。


该项目的名称是:Deep-Learning-Book-Chapter-Summaries,作者是 Aman Dalmia 和 Ameya Godbole 两位小哥。项目地址为:


https://github.com/dalmia/Deep-Learning-Book-Chapter-Summaries


主要内容


这份花书核心笔记主要涉及的章节包括:


  • ch02 线性代数

  • ch03 概率与信息理论

  • ch04 数值优化

  • ch07 深度学习正则化

  • ch08 深度模型中的优化

  • ch09 卷积网络

  • ch11 实践方法论

  • ch13 线性因子模型


笔记的形式是 .ipynb,便于在 Jupyter Notebook 上打开和观看。例如,我们来看一下第二章线性代数的笔记。



可见,Jupyter 笔记不仅包含了知识点的总结,也有相关代码。再来看第九章的卷积网络部分,配备了一些完整的图片处理代码。


import numpy as np
from scipy import signal
from scipy import misc
import matplotlib.pyplot as plt

# %matplotlib inline

img = misc.ascent()
kernel = np.random.randn(5,5)
# kernel = np.array([[0,-10,0,10,0],[-10,-30,0,30,10],[0,-10,0,10,0]])

img = img.astype(np.float32)/255
orig_in = img

offsetx = offsety = 20
shift_in = np.zeros(orig_in.shape)
shift_in[offsetx:,offsety:] = img[:-offsetx,:-offsety]

rot_in = misc.imrotate(img, 90)
scale_in = misc.imresize(orig_in, 1.5)

output1 = signal.convolve2d(orig_in, kernel, mode='same')
output2 = signal.convolve2d(shift_in, kernel, mode='same')
output3 = signal.convolve2d(rot_in, kernel, mode='same')
output4 = signal.convolve2d(scale_in, kernel, mode='same')


fig, axes = plt.subplots(24, figsize=(147))
ax_orig = axes[0,0]
ax_shift = axes[0,1]
ax_rot = axes[0,2]
ax_scale = axes[0,3]

diff_orig = axes[1,0]
diff_shift = axes[1,1]
diff_rot = axes[1,2]
diff_scale = axes[1,3]

ax_orig.imshow(output1, cmap='gray')
ax_orig.set_title('Original')
ax_shift.imshow(output2, cmap='gray')
ax_shift.set_title('Shifted')
ax_rot.imshow(output3, cmap='gray')
ax_rot.set_title('Rotated')
ax_scale.imshow(output4, cmap='gray')
ax_scale.set_title('Scaled')

def shift(arr, offset):
output = np.zeros(arr.shape)
output[offset:offset:] = arr[:-offset,:-offset]
return output

def rotate(arr, angle):
return misc.imrotate(arr, angle)

def resize(arr, scale):
return misc.imresize(arr, scale)

diff_orig.hist(np.ravel(output1),bins=100)
diff_orig.set_title('Output histogram')
diff_shift.hist(np.ravel(np.abs(output2-shift(output1, 20))),bins=100)
diff_shift.set_title('Shift histogram difference')
diff_rot.hist(np.ravel(np.abs(output3-rotate(output1, 10))),bins=100)
diff_rot.set_title('Rotate histogram difference')
diff_scale.hist(np.ravel(np.abs(output4-resize(output1, 1.5))),bins=100)
diff_scale.set_title('Scale histogram difference')

ax_orig.set_xticks([])
ax_shift.set_xticks([])
ax_rot.set_xticks([])
ax_scale.set_xticks([])

ax_orig.set_yticks([])
ax_shift.set_yticks([])
ax_rot.set_yticks([])
ax_scale.set_yticks([])

plt.tight_layout()
# plt.show()
plt.savefig('images/conv_equivariance.png')



对于池化层的代码示例:


import numpy as np
np.random.seed(101)

from scipy import signal
from scipy import misc
import matplotlib.pyplot as plt
%matplotlib inline

img = misc.ascent()
img = img.astype(np.float32)/255

# The image is more interesting here
orig_in = img[-200:,-300:-100]
offsetx = offsety = 15
shift_in = img[-200-offsetx:-offsetx,-300-offsety:-100-offsety]
kernel1 = np.random.randn(5,5)
kernel2 = np.random.randn(5,5)
kernel3 = np.random.randn(5,5)

def sigmoid(arr):
# Lazy implementation of sigmoid activation
return 1./(1 + np.exp(-arr))

def maxpool(arr, poolsize, stride):
# Lazy looping implementation of maxpool
output_shape = np.floor((np.array(arr.shape)-poolsize)/stride)+1
output_shape = output_shape.astype(np.int32)
output = np.zeros(output_shape)
for x in range(output_shape[0]):
for y in range(output_shape[1]):
output[x,y] = np.max(arr[x*stride:x*stride+poolsize,y*stride:y*stride+poolsize])
return output

output1_1 = signal.convolve2d(orig_in, kernel1, mode='valid')
pool1_1 = maxpool(output1_1, 22)
actv1_1 = sigmoid(pool1_1)
output1_2 = signal.convolve2d(actv1_1, kernel2, mode='valid')
pool1_2 = maxpool(output1_2, 22)
actv1_2 = sigmoid(pool1_2)
output1_3 = signal.convolve2d(actv1_2, kernel3, mode='valid')
pool1_3 = maxpool(output1_3, 22)

output2_1 = signal.convolve2d(shift_in, kernel1, mode='valid')
pool2_1 = maxpool(output2_1, 22)
actv2_1 = sigmoid(pool2_1)
output2_2 = signal.convolve2d(actv2_1, kernel2, mode='valid')
pool2_2 = maxpool(output2_2, 22)
actv2_2 = sigmoid(pool2_2)
output2_3 = signal.convolve2d(actv2_2, kernel3, mode='valid')
pool2_3 = maxpool(output2_3, 22)

fig, axes = plt.subplots(43, figsize=(1010))

k1, k2, k3 = axes[0,:]
p1_1, p1_2, p1_3 = axes[1,:]
p2_1, p2_2, p2_3 = axes[2,:]
h1, h2, h3 = axes[3,:]

k1.imshow(kernel1, cmap='gray')
k1.set_title('kernel1')
k2.imshow(kernel2, cmap='gray')
k2.set_title('kernel2')
k3.imshow(kernel3, cmap='gray')
k3.set_title('kernel3')
k1.set_xticks([])
k2.set_xticks([])
k3.set_xticks([])
k1.set_yticks([])
k2.set_yticks([])
k3.set_yticks([])

p1_1.imshow(pool1_1, cmap='gray')
p1_1.set_title('pool1_1')
p1_2.imshow(pool1_2, cmap='gray')
p1_2.set_title('pool1_2')
p1_3.imshow(pool1_3, cmap='gray')
p1_3.set_title('pool1_3')
p1_1.set_xticks([])
p1_2.set_xticks([])
p1_3.set_xticks([])
p1_1.set_yticks([])
p1_2.set_yticks([])
p1_3.set_yticks([])

p2_1.imshow(pool2_1, cmap='gray')
p2_1.set_title('pool2_1')
p2_2.imshow(pool2_2, cmap='gray')
p2_2.set_title('pool2_2')
p2_3.imshow(pool2_3, cmap='gray')
p2_3.set_title('pool2_3')
p2_1.set_xticks([])
p2_2.set_xticks([])
p2_3.set_xticks([])
p2_1.set_yticks([])
p2_2.set_yticks([])
p2_3.set_yticks([])

h1.hist(np.ravel(np.abs(pool1_1-pool2_1)),bins=100)
h1.set_title('Pool 1 diff')
h2.hist(np.ravel(np.abs(pool1_2-pool2_2)),bins=100)
h2.set_title('Pool 2 diff')
h3.hist(np.ravel(np.abs(pool1_3-pool2_3)),bins=100)
h3.set_title('Pool 3 diff')

plt.tight_layout()
# plt.show()
plt.savefig('images/pool_invariance.png')



博客笔记


该项目的作者还在自己的个人网站上发布了花书的精炼笔记,地址为:


https://medium.com/inveterate-learner/tagged/deep-learning



附加资源


除了这份花书重点章节摘要之外,石头君还推荐一份来自 Microsoft 计算机软件工程师 Jeff Macaluso 总结的关于花书的经验法则!


在线版阅读地址:


https://jeffmacaluso.github.io/post/DeepLearningRulesOfThumb/



离线地址:

链接:

https://pan.baidu.com/s/1jxLLnc_-9YcwdJrnXDScNw 

提取码:9sfw 


希望这份资源对你有所帮助~




*延伸阅读



点击左下角阅读原文”,即可申请加入极市目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群,更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~



觉得有用麻烦给个好看啦~  

视频 小程序 ,轻点两下取消赞 在看 ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存